CIC energi GUNE

energy cooperative research centre

Development of an innovative thermal energy storage (TES) solution for middle-size concentrated solar power (CSP) plant

Abdessamad Faik

Thermal energy storage group

Funding:

The financial support from the European Community through the H2020 program under grant agreement number 657690.

OUTLINE

Introduction

Objectives

Experimental work

- Selection of the storage material
- Structural characterization
- Thermophysical properties
- Mechanical properties
- Corrosion and compatibility study

Conclusions

Perspectives

Background of the project

The CSP-ORC (1 MWel) commercial power plant characteristics:

Plant location	Benguerir, Morocco
Direct Normal Irradiance	2100 kWh/m²/year
Solar field (SF) heat transfer fluid	Delcoterm Solar E15 (Mineral oil)
SF inlet/outlet temperature	180 - 300 °C
ORC working fluid	Cyclopentane
ORC Gross output	1 MW _{el}
ORC design point efficiency	20 %
Storage	No

Overview of the Green Energy Park

Power block of the plant

The aim of the ORC-Plus project

Develop a TES solution adapted to 1 – 5 MWel CSP plants:

- Extension of the solar field to feed the storage system.
- Validation of thermocline TES Prototype of 200 kWh_{th} at laboratory scale.
- Construction of commercial TES system of 20MWh_{th} (4 hours of storage) for the CSP-ORC power plant at Green Energy Park in Ben-Guerir, Morocco.

SF2: 3 loops to charge TES

Integration of a novel thermal storage system

The aim of the ORC-Plus project

TES prototype of 200 kWth (1/100 industrial scale) to validate the technology:

Solid packed-bed thermocline system is under development and testing at laboratory scale.

- Storage based on natural stratification of temperature.
- Two materials in direct contact in the same tank:
 - Filler (packed bed): ceramic material
 - Heat transfer fluid: liquid (oil or molten salt) or gas (Air)

Developer	CIC EnergiGUNE
Technology	Packed-bed thermocline
Total energy capacity (kWh _{th})	200
Storage volume	2 m ³
Filler material	Solid material
Heat Transfer Fluid (HTF)	Delcoterm Solar E15 (mineral oil)
Temperature range	180°C-300°C

Selection of the storage material

Valorisation of different classes of ceramic materials:

- > To obtain a viable and cost-effective TES material,
- > To reduce the industrial environmental impact.

BOF-Slag (by-product)

Magnetite (mineral)

River Rock (local natural rock)

Material requirements for TES:

- Low cost ceramic materials,
- Appropriate thermophysical properties,
- Good thermal stability,
- Good mechanical behaviour,
- Good thermomechanical stability,
- > Compatible with the heat transfer fluids.

Structural characterization

Chemical Composition (ICP - OES)

Material	Element (wt.%)					
	AI	Ca	Fe	Mg	Si	Mn
BOF-Slag	1.2	26.6	20.9	3.7	8.3	3.6
Magnetite	0.2	2.1	57.5	0.2	1.0	0.1
River Rock	3.44	23.5	1.6	1.1	11.3	-

multi-phases

mono-phase

multi-phases

SEM & EDX analyses

Perpignan, June 14th, 2017

CIC Energigune All rights reserved

Thermophysical properties

Thermal conductivity

> The thermal conductivity at 100°C is around 1.9, 2.8 and 3.4 W/m.K for BOF-Slag, River rock and Magnetite, respectively.

> Slight decrease with temperature is obtained.

Thermophysical properties

Specific heat C_p

Specific Heat Cp of BOF-Slag, Magnetite and River rock

Material	ρ(kg/m³)	Cp(J/g.K)	Volumetric Storage Capacity (KJ/m ³ .K)
BOF-Slag	3806	0.91	3446
Magnetite	4962	0.89	4416
River rock	2616	1.08	2825
Alumina	3953	0.88	3478
Cofalit	3120	0.90	2808
HT Concrete	2250	0.92	2070

Perpignan, June 14th, 2017

Mechanical properties

River rock

85

Compressive Strength

- > The compression tests were carried out using a test speed of 3 mm/min and load cell of 100 KN.
- > The compressive yield strength (σ) was calculated by:

$$\sigma = \frac{F}{A}$$
 F: Load at yield,
A: Cross-section area.

The maximum compressive strength at RT are 357, 193 and 85 MPa for BOF-Slag, Magnetite and River rock, respectively.

Mechanical properties

Compressive Strength

Compressive Strength after thermal cycling

Mechanical properties

Compressive Strength

- The reasons:
- The gradient of the temperature due to the limited thermal conductivity,
- The multi-phases constitutions with different thermal expansion coefficients.

multi-phases

mono-phase

multi-phases

SEM images of BOF-Slag, Magnetite and River rock

The magnetite presents high thermal conductivity and mono-phase constitution which may responsible of its good thermomechanical behaviour.

Perpignan, June 14th, 2017

CIC Energigune All rights reserved

Corrosion & compatibility study

Systems and conditions

- Isothermal mode: at 310 °C for 500h, 1000, 1500 and 3000 hours
- Cycling mode: between 180°C and 310°C with heating rate of 10°C.min-1
- Time: 500, 1000, 1500 and 3000 hours

Corrosion & compatibility study

Methods

Corrosion & compatibility study

Results: Magnetite + Delcoterm Solar E15 Oil at 310°C

- Magnetite: no significant modifications were detected
- Oil: no structural changes and no thermophysical properties modifications were observed
- ✤ The Magnetite and Delco Term oil are fully compatible to operate in direct contact up to 310°C

SEM cross section images of the Magnetite after 500,1000 and 1500 hours of direct contact with Delcoterm E15 oil

Conclusions

The **Magnetite** is very promising material:

- High volumetric energy storage capacities: 4416 kJ/m³.K,
- High values of the thermal conductivity: >2.5 W/m.K,
- Good **thermo-stability** in the operation temperature range,
- Good mechanical properties of as-received materials at room temperature.
- Good thermo-mechanical stability up to 250 cycles in the operation temperature range
- Fully compatible with the HTF (DelcoTem Oil) in the operation temperature range.

This material can be considered as the most promising candidate for effective thermal energy storage.

Perspectives

Design, realization and commissioning of the trial TES system

The construction of the system based on Magnetite pebbles as storage media is already constructed and under testing.

- Useful volume for storage: 2.07 m³
- Aspect ratio = 2 (H/D)
- Useful dimensions: D=1.097 m & H =2.194 m
- Void fraction = 0.37

Storage material: Magnetite

Density: 4962 kg/m³ Mass: 6468 kg Cp:0.85 J/g.K ΔT=120 K Energy stored in Magnetite: 119 kWh

<u>Oil:</u>

Density: 675 kg/m³ Cp: 2.68 kJ/(kg.K) Energy stored in the oil: 80 kWh

TOTAL: 199 kWh_{th}

pignan, lune 14^m

Dr. Abdessamad Faik

<u>afaik@cicenergigune.com</u>

www.cicenergigune.com

Thank you for your attention